Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping.
نویسندگان
چکیده
BACKGROUND Additional instruments have become available since instruments for DNA melting analysis of PCR products for genotyping and mutation scanning were compared. We assessed the performance of these new instruments for genotyping and scanning for mutations. METHODS A 110-bp fragment of the beta-globin gene including the sickle cell anemia locus (HBB c. 20A>T) was amplified by PCR in the presence of LCGreen Plus or SYBR Green I. Amplicons of 4 different genotypes [wild-type, homozygous, and heterozygous HBB c. 20A>T and double-heterozygote HBB c. (9C>T; 20A>T)] were melted on 7 different instruments [Applied Biosystems 7300, Corbett Life Sciences Rotor-Gene 6500HRM, Eppendorf Mastercycler RealPlex4S, Idaho Technology LightScanner (384 well), Roche LightCycler 480 (96 and 384 well) and Stratagene Mx3005p] at a rate of 0.61 degrees C/s or when this was not possible, at 0.50 degrees C steps. We evaluated the ability of each instrument to genotype by melting temperature (Tm) and to scan for heterozygotes by curve shape. RESULTS The ability of most instruments to accurately genotype single-base changes by amplicon melting was limited by spatial temperature variation across the plate (SD of Tm = 0.020 to 0.264 degrees C). Other variables such as data density, signal-to-noise ratio, and melting rate also affected heterozygote scanning. CONCLUSIONS Different instruments vary widely in their ability to genotype homozygous variants and scan for heterozygotes by whole amplicon melting analysis. Instruments specifically designed for high-resolution melting, however, displayed the least variation, suggesting better genotyping accuracy and scanning sensitivity and specificity.
منابع مشابه
Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes.
BACKGROUND DNA melting analysis for genotyping and mutation scanning of PCR products by use of high-resolution instruments with special "saturation" dyes has recently been reported. The comparative performance of other instruments and dyes has not been evaluated. METHODS A 110-bp fragment of the beta-globin gene including the sickle cell anemia locus (A17T) was amplified by PCR in the presenc...
متن کاملHigh-resolution genotyping by amplicon melting analysis using LCGreen.
BACKGROUND High-resolution amplicon melting analysis was recently introduced as a closed-tube method for genotyping and mutation scanning (Gundry et al. Clin Chem 2003;49:396-406). The technique required a fluorescently labeled primer and was limited to the detection of mutations residing in the melting domain of the labeled primer. Our aim was to develop a closed-tube system for genotyping and...
متن کاملMultiplex amplicon genotyping by high-resolution melting.
High-resolution amplicon melting is a simple method for genotyping that uses only generic PCR primers and a saturating DNA dye. Multiplex amplicon genotyping has previously been reported in a single color, but two instruments were required: a carousel-based rapid cycler and a high-resolution melting instrument for capillaries. Manual transfer of capillaries between instruments and sequential me...
متن کاملTwo for typing: homogeneous combined single-nucleotide polymorphism scanning and genotyping.
More than 20 years after the first in vitro amplification of DNA by PCR, this technique is firmly established for diagnostic purposes in many clinical laboratories. PCR technology is an exciting field that has continually advanced. Evolutionary steps have been, for example, the transition from conventional cycling to rapid-cycling (1 ), from post-PCR to real-time product analysis (2 ), and from...
متن کاملMultiplex Fluorescence Melting Curve Analysis for Mutation Detection with Dual-Labeled, Self-Quenched Probes
Probe-based fluorescence melting curve analysis (FMCA) is a powerful tool for mutation detection based on melting temperature generated by thermal denaturation of the probe-target hybrid. Nevertheless, the color multiplexing, probe design, and cross-platform compatibility remain to be limited by using existing probe chemistries. We hereby explored two dual-labeled, self-quenched probes, TaqMan ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical chemistry
دوره 53 8 شماره
صفحات -
تاریخ انتشار 2007